Tuesday, September 30, 2014


Metacognition is a critically important, yet often overlooked component of learning. Effective learning involves planning and goal-setting, monitoring one's progress, and adapting as needed. All of these activities are metacognitive in nature. By teaching students these skills - all of which can be learned - we can improve student learning. There are three critical steps to teaching metacognition:

  1. Teaching students that their ability to learn is mutable
  2. Teaching planning and goal-setting
  3. Giving students ample opportunities to practice monitoring their learning and adapting as necessary

Self-Regulated Learning

Expert learners consider their learning goals, plan accordingly, and monitor their own learning as they carry out their plans. Novice learners, in contrast, don't have explicit learning goals, fail to plan, and often have only one learning strategy, which they apply without thinking about whether it's appropriate to the situation. Not surprisingly, novice learners are often disappointed in the results of their studying, while expert learners are generally satisfied with their results (and will make adjustments if not).

Expert learners engage in what we call Self-Regulated Learning. A Self-Regulated Learner begins with goal-setting and planning, taking into account his or her time constraints, strengths and weaknesses relevant to the learning task, and motivation for learning. Having set reasonable goals and planned his or her learning strategies, the Self-Regulated Learner then implements his or her plan, monitoring the results as he or she studies. If the chosen strategies are working well, he or she continues; if not, he or she makes adjustments and monitors the results until they are in line with his or her learning goals.

Expert Learners Can Be Made

Although early attempts to teach students metacognitive skills were unsuccessful, more recent studies demonstrate that metacognition can be taught and learned.

Step 1: Teach students that the ability to learn is not a fixed quantity

The key to a student's ability to become a self-regulated (i.e., metacognitive) learner is understanding that one's ability to learn is a skill that develops over time rather than a fixed trait, inherited at birth. Students who believe that the ability to learn can improve over time earn higher grades, even after controlling for prior achievement (Henderson and Dweck, 1990). These students set reasonable learning goals for themselves and have the self-efficacyto choose and use productive learning strategies. These strategies then result in learning gains. Moreover, students can be taught that their ability to learn can improve over time; those who learn this simple lesson show increased motivation to learn and improved grades (Aronson et al., 2002; Blackwell et al., 2007).

Step 2: Teach students how to set goals and plan to meet them

Many students don't set explicit learning goals for themselves, or make plans to meet any goals they might have. Yet students who received as little as half an hour of training (in the form of one-to-one tutoring) on the process of self-regulated learning outperformed students who did not receive the training in several important ways. First and foremost, they learned more. In addition, they planned how they would spend their time in the learning task, spent more of their time in goal-oriented searching, and periodically reminded themselves of their current goal (Azevedo and Cromley, 2004).

Step 3: Give students opportunities to practice self-monitoring and adapting

Accurate self-monitoring is quite difficult. Many first-year college students, in particular, are over-confident. For example, first-year students at Carnegie Mellon University were asked what grades they anticipated earning in their science and math courses. While results varied somewhat by subject area, more than 90% of students in biology, chemistry, physics and calculus courses expected to earn A's or B's. These expectations were clearly not realistic and suggested some problems on the horizon for these students.


No comments: